lie in rumen health

conducted by the U.S. Department of Agriculture’s National Animal Health Monitoring System determined that 50% of the mature cows and 25% of first-calf heifers experienced subclinical hypocalcemia within 48 hours of calving. Pre-calving strategies for reducing subclinical hypocalcemia include: improving dry matter intake with best management practices and cow comfort, reducing dietary potassium (to less than 1.5% of dry matter), raising dietary magnesium (to 0.35-0.40% of dry matter) and including a palatable chloride source to attain a dietary chloride level that is a half-percentage point less than dietary potassium, achieving a urine pH of 6.6-6.8 in Holsteins and 5.8-6.3 in Jerseys (Goff, 2008).

Conclusion
Both profitability and stewardship rely on balanced diets that meet nutrient requirements for each phase of growth and lactation and promote health and reproductive success. Dairy producers and advisers who focus their efforts on improved rumen function and productivity will likely improve profitability.

Many of the same actions taken to improve rumen function to achieve high performance also reduce methane emissions and will help the dairy industry continue to make progress. These efforts will also support communicat-
ing progress on dairy stewardship and sustainability to customers and con-
mers.

FDA sees some improvement in antibiotic resistance trends

THE U.S. Food & Drug Administration released its “2012-13 National Antimi-
crobial Resistance Monitoring System (NARMS) Integrated Report.”

FDA said this report replaces its an-
ual “NARMS Executive Summary” report and highlights antimicrobial re-
sistance patterns in bacteria isolated from humans, retail meats and animals at slaughter. Specifically, the report fo-
cuses on major foodborne pathogens that are resistant to antibiotics con-
sidered important to human medicine and on multi-drug-resistant pathogens (described as resistant to three or more classes of antibiotics).

NARMS monitors foodborne patho-
gens to determine whether they are resistant to various antibiotics used in human and veterinary medicine. Specif-
ically, NARMS screens for non-typhoidal salmonella, campylobacter, Escherichia coli and enterococcus.

Salmonella and campylobacter are the leading bacterial causes of food-
borne illness. While E. coli and enterococcus cause foodborne illness, they are included in NARMS mainly to help track the occurrence and spread of resistance.

References


Hristov, A.N., J. Oh, J.L. Firkins, J. Dijks-
tra, E. Kebreab, G. Waghorn, H.P.S. Makkar, A.T. Singh, S. Wang, Y. Huang, C. Lee, P.J. Ger-
5069.


Kokko, C., J.M. Dann, K.W. Cotanch, J.W. Darrow and R.J. Grant. 2012. Lacta-
tional performance, chewing behavior and ruminal fermentation of dairy cows fed diets differing in grain-to-concentrate ratio. J. Dairy Sci. 95:3260.

Liang, D., and V.E. Cabrera. 2015. Optimizing productivity, herd structure, envi-
rnmental performance and profitability of dairy cattle herds. J. Dairy Sci. 98:2812-
2823.


Nordlund, K., N. Cook and G. Oetzel. 2006. Commingling dairy cows: Pen moves, stocking density and health. 39th Proceed-
ings American Association Bovine Practi-
tioners, St. Paul, Minn. p. 36-42.

Oba, M., and M.S. Allen. 1999. Evalua-
tion of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci. 82:589-596.


Warner, D.S., C. Podesta, B. Hatw, G. Klopf, H. van Laar, A. Bannink and J. Dijks-
