Spray-dried egg in postweaning diets evaluated

Johne’s risk: An online application designed to help producers evaluate their farm for management practices that may increase the risk of introducing Johne’s disease into their herd and/or spreading the infection to uninfected animals is now available at http://www.johnes.org. It is sponsored by the National Milk Producers Federation and the Johne’s Disease Integrated Program.

Aflatoxin kit: Romer Labs reported their aflatoxin test kits as part of their Agriculture’s Grade B standards. Their Screening Test kit to 5.0 ppm (mg/kg) is the most sensitive aflatoxin test kit to 5.0 to 10 ppm (mg/kg) available, according to http://www.milkfeed.com.

Dairy app: Adisseo announced its new MyMilkPay app, which streamlines calculations to determine the economic impact of balancing amino acids in a dairy herd. The MyMilkPay app calculates the price of milk for any component, calculates the value of milk when feed costs and component levels change, and calculates the profit of adding one more pound of each component, and calculates the cell count and the producer price of milk. The free app is available for iPhone.

Table 1. Analyzed nutrient composition (% of spray-dried egg

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Spray-dried egg</th>
<th>Soybean meal</th>
<th>Spray-dried plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolizable energy kcal/kg</td>
<td>3,290</td>
<td>3,330</td>
<td>3,440</td>
</tr>
<tr>
<td>ADFI, g/day</td>
<td>540</td>
<td>549</td>
<td>541</td>
</tr>
<tr>
<td>Gain/ feed</td>
<td>0.625</td>
<td>0.625</td>
<td>0.627</td>
</tr>
<tr>
<td>Average daily gain, g/day</td>
<td>337</td>
<td>342</td>
<td>338</td>
</tr>
<tr>
<td>Average daily feed intake, g/day</td>
<td>423</td>
<td>433</td>
<td>440</td>
</tr>
<tr>
<td>Poultry byproduct meal</td>
<td>0.41</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Table 2. Diet composition (% for experiments 1 and 2

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Control (1)</th>
<th>Spray-dried egg (2)</th>
<th>Control (1)</th>
<th>Spray-dried egg (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean meal</td>
<td>20.0</td>
<td>0</td>
<td>20.0</td>
<td>0</td>
</tr>
<tr>
<td>Spray-dried egg</td>
<td>0</td>
<td>10.0</td>
<td>0</td>
<td>10.0</td>
</tr>
<tr>
<td>Fish meal</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>Methionine+cysteine, %</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Tryptophan, %</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Feed intake during any of the other phases.</td>
<td>540</td>
<td>549</td>
<td>541</td>
<td>542</td>
</tr>
<tr>
<td>Average daily gain, g/day</td>
<td>337</td>
<td>342</td>
<td>338</td>
<td>344</td>
</tr>
<tr>
<td>Average daily feed intake, g/day</td>
<td>423</td>
<td>433</td>
<td>440</td>
<td>427</td>
</tr>
<tr>
<td>Gain/ feed</td>
<td>0.625</td>
<td>0.625</td>
<td>0.627</td>
<td>0.630</td>
</tr>
</tbody>
</table>

Table 3. Composition (% of diets fed in experiment 3

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Control (1)</th>
<th>Low (2)</th>
<th>Medium (3)</th>
<th>High (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolizable energy kcal/lb</td>
<td>3,470</td>
<td>3,440</td>
<td>3,400</td>
<td>3,320</td>
</tr>
<tr>
<td>Protein concentrate %</td>
<td>1.8</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Available phosphorus %</td>
<td>0.41</td>
<td>0.40</td>
<td>0.40</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 4. Performance results from experiment 4

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Control (1)</th>
<th>Low (2)</th>
<th>Medium (3)</th>
<th>High (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolizable energy kcal/lb</td>
<td>3,470</td>
<td>3,440</td>
<td>3,400</td>
<td>3,320</td>
</tr>
<tr>
<td>Protein concentrate %</td>
<td>1.8</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Available phosphorus %</td>
<td>0.41</td>
<td>0.40</td>
<td>0.40</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 5. Growth performance results from experiment 4

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Control (1)</th>
<th>Low (2)</th>
<th>Medium (3)</th>
<th>High (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolizable energy kcal/lb</td>
<td>3,470</td>
<td>3,440</td>
<td>3,400</td>
<td>3,320</td>
</tr>
<tr>
<td>Protein concentrate %</td>
<td>1.8</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Available phosphorus %</td>
<td>0.41</td>
<td>0.40</td>
<td>0.40</td>
<td>0.32</td>
</tr>
</tbody>
</table>

References:

- **John H. Gohil** is president of Agri-Nutri- tion Services Inc., Shakopee, Minn. To expedite answers to questions concern- ing this article, please direct inquiries to Feedsuffs, Bottom Line of Nutrition, 5410 W. 78th St., Suite 200, Bloomin- gton, Minn. 55439, or email comments@feedsuffs.com.